

HV320-DP-V2 Profibus-DP Communication Card User Manual

HNC Electric Limited

1. Overview

Thank you for using our HV320-V2 series AC drive and Profibus-DP expansion card (hereinafter referred to as HV320-DP-V2 card). HV320-DP-V2 card is a Profibus-DP fieldbus adapter card that complies with the internationally accepted Profibus fieldbus standard. This card is installed on the HV320-V2 series inverter to improve communication efficiency and facilitate the inverter networking function, making the inverter a slave station of the fieldbus and accepting the control of the fieldbus master station.

This manual requires that the corresponding HV320-DP-V2 card software version is 1.00 or above, and the matching GSD file name is "HV320-V2 DP.gsd".

Please read this user guide carefully before using this product.

Figure 1-1 Appearance of the HV320-DP-V2 card

2. 2. Installation and Setup

2.1 Installing the HV320-DP-V2 Card

The HV320-DP-V2 card is installed inside the HV320-V2 series AC drive. Before installation, disconnect the power supply of the AC drive and wait for about 10 minutes until the charging indicator on the AC drive lights up. Then, insert the HV320-DP-V2 card into the AC drive to avoid damage caused by the tension of the external signal cable on the inter-board signal socket.

Figure 2-3 shows the hardware layout of the HV320-DP-V2 card. The 2* 8P bent pin socket (P2) is used to connect the inverter. The HV320-DP-V2 card provides a DP communication interface for communication with the master station and the slave station.

For hardware details, see Table 2-1

Figure 2-3 HV320-DP-V2 card (hardware)

Table 2-1 Hardware description of the HV320-DP-V2 ca	ard
--	-----

Symbol	Hardware Name	Functional Description
P2	2* 8P bent pin socket	For connecting AC drives
CN1	Profibus communication connector (DB9 pin)	
SW1,SW2	Profibus station number setting	SW1=X10,SW2=X1
LED5	Profibus-DP communication indicator (DE) (green)	HV320-DP-V2 card, see
LED4	Profibus-DP fault indicator (ER) (red)	Table 2-2.
LED1	Inverter communication abnormality indicator (MT) (green)	
LED6	Power indicator (PWR) (green)	

Table 2-2 Specifications of the HV320-DP-V2 card

Indicator signal		Status description	Solution
LED5	Always green	DP normal	N/A
	OFF state	Communication with	Set P0-28 to 1 and check if the AC drive supports the
		the drive is lost	HV320-DP-V2 card.

LED4	OFF state	normal	N/A
	Always red	communication fail	Please contact technical support.
LED1	OFF state	normal	N/A
	Always green	Communication	Check whether the CN1 connector is connected
		with the inverter main	normally and whether the inverter is powered on.
		control board is	
		abnormal	
LED6	Always green	normal	N/A
	OFF state	ESC internal fault	Please contact technical support.

illustrate Note: For some products, the indicator light color may not match the number. The number shall prevail .

2.2 Profibus connection topology and transmission distance

The wiring diagram of this DP expansion card and Profibus master station is shown in the figure below.

Terminal matching resistors need to be connected at both ends of the Profibus bus. The dial code needs to be dialed according to the instructions on the wiring terminal. After the terminal resistors are correctly connected, the resistance between A1/B1 should be about 110Ω when the power is off. The communication cables on the DP connectors of the devices at both ends of the Profibus network need to be connected to the corresponding channels of A1/B1, otherwise the terminal resistors cannot be connected. Not connecting or connecting too little terminal resistors will affect the communication quality and cause unstable communication.

Depending on the different baud rate settings of the master station, the length of the communication wire between this DP expansion card and the Profibus master station is also required, and must strictly follow the limited communication data wire length of SIEMENS. The baud rate and wire length requirements are shown in the table below.

Transmission rate	Maximum length of	Cable Type B
Kbps	cable type A (m)	Maximum Length (m)
9.6	1200	1200
19.2	1200	1200
187.5	600	600
500	200	200
1500	100	70
3000	100	
6000	100	not support
12000	100	

Cable parameters	Type A	Туре В
Impedance	135Ω~165Ω (f=3~20MHz)	100Ω~130Ω (f>100kHz)
Capacitance	<30pF/m	<60pF/m
Resistance	<110Ω/km	Not specified
Conductor	>0.24mm 2	>0.22
cross-sectional area	20.3411111 -	<u> </u>

Cable specifications are shown in the table below.

3. Communication Configuration

3.1 Parameters

Communication configuration between HV320-DP-V2 card and HV320-V2 series inverter is established After installing HV320-DP-V2 card on HV320-V2 series AC drive, communication configuration is completed to realize communication between them.

Communication card settings for drives

The following parameters must be set to operate between the HV320-DP-V2 card and the HV320-V2 series AC drive and to connect the HV320-DP-V2 card to a Profibus-DP fieldbus network.

Function	name	content	Settings	describe
code				
P0-02	Run command source	0: Operation panel running command channel (LED off)1: Terminal command channel (LED on)2: Communication command channel (LED flashes)	2	Run command issued via communication
P0-03	Main frequency source X selection	0: Digital setting (preset frequency P0-08, UP/ DOWN can be modified, no memory is stored after power failure) 1: Digital setting (preset frequency P0-08, UP/ DOWN can be modified, power-off memory) 2: AI 1 3: AI2 4: AI 3 5: PULSE setting (DI 5) 6: Multi-segment instructions 7: Simple PLC 8: PID 9: Communication setting	9	Given a target frequency By communication
P0-28	Serial communication protocol	0: Modbus protocol 1: Communication card bridge protocol	1	Select special item communication card for communication

• Communication control related function codes

Function code	Name	Predetermined area		Decimal address
U3-16	Frequency setting	-Maximum frequency~Maximum frequency 0.01Hz		29456
U3-17	control commands	0001: Forward operation 0002: Reverse operation 0003: Forward jog 0004: Reverse jog	0005: Free stop 0006: Deceleration and stop 0007: Fault reset	29457

Function code	Name	Predetermined area		Decimal address
		BIT 0: DO 1 output control		
		BIT 1: DO 2 output control	BIT 5: VDO 1	
112 10		BIT 2: RELAY 1 lose Out of	BIT 6: VDO 2	
03-18	DO control	control	BIT 7: VDO 3	
		BIT 3: RELAY 2 lose Out of	BIT 8: VDO 4	20450
		control	BIT 9: VDO 5	29458
		BIT 4: FMR output control		
U3-19	AO 1 control	$0\sim$ 7 FFF means 0 %~ 100%		29459
U3-20	AO 2 control	$0 \sim 7$ FFF means 0 % $\sim 100\%$		29460
U3-21	FMP Control	$0 \sim 7$ FFF means 0 %~ 100%		29461
U3-22	reserve	reserve		
U3-23	Speed control	Signed data, 1 rpm		29463

When using the HV320-DP-V2 card, the written PZD1 is mapped to U3-17 by default, and the PZD2 is mapped to U3-16 by default. If you find that the command or frequency cannot be written to the inverter normally, but PZD3~PZD12 can be written, and P0-02=2 and P0-03=9, then you can check on the inverter whether PE-00 is U3-17 and PE-01 is U3-16. If not, manually change them to the correct values.

• Communication monitoring related function codes

Function code	Name	Unit	Decimal address
U 0-00	Operating frequency (Hz)	0.01 Hz	28672
U0-01	Set frequency (Hz)	0.01 Hz	28673
U0-02	Bus voltage (V)	0.1V	28674
U0-03	Output voltage(V)	1V	28675
U0-04	Output current(A)	0.01A	28676
U0-05	Output power (kW)	0.1kW	28677
U0-06	Output torque(%)	0.10%	28678
U0-07	DI input status	1	28679
U0-08	DO output status	1	28680
U0-09	AI 1 voltage (V)	0.01V	28681
U0-10	AI 2 voltage (V)	0.01V	28682
U0-11	AI 3 voltage (V)	0.01V	28683
U0-12	Count value	1	28684

U0-13	Length value	1	28685
U0-14	Load speed display	100.00%	2868600.00%
U0-15	PID Setting	1	28687
U0-16	PID Feedback	1	28688
U0-17	PLC stage	1	28689
U0-18	PULSE input pulse frequency (Hz)	0.01 kHz	28690
U0-19	Feedback speed (Hz)	0.01 Hz	28691
U0-20	Remaining running time	0.1Min	28692
U0-21	AI 1 voltage before correction	0.001V	2869300.00%
U0-22	AI 2 voltage before correction	0.001V	28694
U0-23	AI 3 voltage before correction	0.001V	28695
U0-24	Line speed	1m/ Min	28696
U0-25	Current power-on time	1 Min	28697
U0-26	Current running time	0.1 Min	28698
U0-27	PULSE input pulse frequency	1Hz	28699
U0-28	Communication setting value	0.01%	28700
U0-29	Encoder feedback speed	0.01 Hz	28701
U0-30	Main frequency X display	0.01 Hz	28702
U0-31	Auxiliary frequency Y display	0.01 Hz	28703
U0-32	View the value of any memory address	1	28704
U0-33	Synchronous machine rotor position	0.1°	2870500.00%
U0-34	Motor temperature value	1℃	2870600.00%
U0-35	Target torque(%)	0.10%	28707
U0-36	Resolver position	1	28708
U0-37	Power factor perspective	0.1°	28709
U0-38	ABZ position	1	28710
U0-39	VF separation target voltage	1V	28711
U0-40	VF separation output voltage	1V	28712
U0-41	DI input status intuitive display	1	28713
U0-42	DO input status intuitive display	1	28714
U0-43	DI input status intuitive display 1	1	28715
U0-44	DI input status intuitive display 2	1	28716
U0-45	accident details	1	28717
U0-58	Z signal counter	1	28730
U0-59	Setting frequency(%)	0.01%	28731
U0-60	Operating frequency(%)	0.01%	28732
U0-61	Inverter status	1	28733
U0-62	Current fault code	1	28734
U0-63	Operating frequency after droop control	0.01 Hz	38375
U0-64	Current Back EMF	0.1V	28736
U0-65	reserve	-	-

		100: CANopen	
	F · 1	200: Profibus - DP	
U0-66	Expansion card	300: CANlink	28738
	lilouei	400: Profinet	
		500: EtherCAT	
110.67	Expansion card	0.01	28730
00-07	version number	0.01	28739
U0-68	Inverter status	1	28740
110 60	Operating	0.01 Hz	29741
00-09	frequency (Hz)	0.01 HZ	28/41
U0-70	Motor speed	1 rpm	28742
U0-71	Output current	0.1A	28743

When using the HV320-DP-V2 card, the read PZD1 is mapped to U0-68 by default, and the PZD2 is mapped to U0-69 by default. If you find that the status or operating frequency cannot be read normally, but PZD3~PZD12 can be read, you can check whether PE-20 is U0-68 and PE-21 is U0-69 on the inverter. If not, please manually change it to the correct value.

3.2 Data transmission format

Profibus-DP Data Format

According to the ProfiDrive (variable speed transmission) protocol, the usage types are divided into five types: PPO1, PPO2, PPO3, PPO4, and PPO5. The functions that can be completed by each data format are as follows:

Type of data	Supported Features
	• Single function parameter operation
PPO1	• Inverter command, frequency setting
	• Inverter status, operating frequency reading
	• Single function parameter operation
	• Inverter command, frequency setting
PPO2	• Inverter status, operating frequency reading
	• 4 function parameters are written periodically
	• 4 function parameters are read periodically
DDO2	• Inverter command, frequency setting
PPO3	• Inverter status, operating frequency reading
	• Inverter command, frequency setting
	• Inverter status, operating frequency reading
PPO4	• 4 function parameters are written periodically
	• 4 function parameters are read periodically
	• Single function parameter operation
	• Inverter command, frequency setting
PPO5	• Inverter status, operating frequency reading
	• 10 function parameters are written periodically
	• 10 function parameters are read periodically

Table	3-2	: PPO	type	descri	ption
-------	-----	-------	------	--------	-------

PPO Type Description

The data block contained in the PPO type data format is divided into two areas, namely the PKW area (parameter area) and the PZD area (process data area). The type data format is shown in the figure below

Figure 3-4 : PPO type data format

PKW Data Description

PKW data mainly realizes the master station's reading and writing operations on a single parameter of the inverter. The communication address of the inverter parameter is directly given by the communication data. The functions realized are as follows

a) Reading inverter function parameters

b) Change of inverter function parameters

Data Format

PKW data contains three groups of array areas, namely PKE, IND, and PWE, where the PKE data byte length is 2 bytes, IND is 2 bytes, and PWE is 4 bytes.

The data format is shown in the following table:

Table 3-3 : PKW data format

			The master	sends data PK	W		
Operation	Parameter address		Reserve			Write operation:	
Command						parameter va	lue
						Read operation	on: empty
РКЕ	PKE	IND	IND	PWE	PWE	PWE	PWE
	Communication card response data PKW						
Operation	Parar	neter address	Reserve Success: Return value				urn value
Command							message
PKE	PKE	IND	IND	PWE	PWE	PWE	PWE

Table 3-4 : PKW data description

	Master sends data PKW description	Inverter response data PKW
		description
PKE	High 4 bits: command code	High 4 bits: Response code
	0: No request	0: No request
	1: Read parameter data	1: Parameters are correct.
	2: Change parameter data	7: Unable to execute
	(The above command codes are decimal numbers	Lower 8 bits: parameter address high bits
	according to)	
	Lower 4 bits: reserved	
	Lower 8 bits: parameter address high bits	

IND	High 8 bits: parameter address low bits	High 8 bits: parameter address low bits
	Lower 8 bits: reserved	Lower 8 bits: reserved
PWE	High 16 bits: reserved	When the request is successful:
	Lower 16 bits: not used for read requests;	parameter value
	indicates parameter value for write requests	When a request fails: Error code (same
		as standard
		MODBUS
		Consistent)
		1: Illegal command
		2: Illegal address
		3: Illegal data
		4: Other errors

Application examples:

The master station reads the inverter function parameter P0-08 sending data PKW area and the inverter response data PKW area as shown in the figure below

Figure 3-5 : Example of the master station reading inverter parameters and sending PKW data

PZD area data description

The data in the PZD area enables the master station to modify and read the inverter data in real time and exchange data periodically.

The frequency converter is directly configured. It mainly includes the following contents:

a) Inverter control command and target frequency are given in real time

b) Real-time reading of the inverter's current status and operating frequency

c) Real-time interaction of function parameters and monitoring parameter data between the inverter and the Profibus-DP master station

Note: "HV320DP.gsd" and later versions

The default mapping of PZD1 written is U3 -17, and the default mapping of PZD2 is U3 -16.

The default mapping of PZD1 is U 0-68 , and the default mapping of PZD2 is U 0-69 .

PZD process data mainly completes the periodic data interaction between the master station and the inverter. The interaction data is shown in Table **8 below** :

Master sends data PZD area			Inv	erter response da	ita PZD area
PZD1	PZD2	PZD3~PZD12	PZD1	PZD2	PZD3~PZD12
Control	Frequency	Real-time	Status	Operating	Real-time
Word	setting	change of inverter	word	frequency	reading of inverter
(U3–17)	(U3–16)	function parameters	(U0–68)	(U0–69)	function parameters

Table 3-5 Interaction data

Tab	le	3-	6
140	10	2	v

I	Master sends data PZD description		Inverter response data PZD area
PZD1	Inverter command word (the	PZD1	Inverter operating status information interest
	command source needs to be set to		0001: Forward operation
	communication, that is, $P 0 - 02 = 2$)		0002: Reverse operation
	0001: Forward operation		0003: Shutdown
	0002: Reverse operation		
	0003: Forward jog		
	0004: Reverse jog		
	0005: Free stop		
	0006: Deceleration and stop		
	0007: Fault reset		
	0008: Fault reset (fault reset is		
	only possible in communication		
	control mode)		
PZD2	The AC drive target frequency	PZD2	Inverter operating frequency (unit: 0.01Hz)
	(frequency source is set to		Returns the actual operating frequency of
	"communication") is in the range		the current inverter. The returned data value is a
	from the negative frequency upper		16-bit signed data.
	limit (negative value) to the positive		
	frequency upper limit (including the		
	decimal point, for example, 2000		
	corresponds to 20.00 Hz on the AC		
	drive). When the given target		
	frequency exceeds this range, the AC		
	drive operates at the frequency upper		
	limit.		
	For example, if the Frequency		
	High Limit setting is 50.00 Hz and		
	the Comm Setting is 6000, the AC		
	drive will run forward at 50.00 Hz. If		
	the Frequency High Limit setting is		
	50.00 Hz and the Comm Setting is		
	-6000, the AC drive will run reverse		
	at 50.00 Hz.		
PZD3~	Changing function parameter	PZD3~	Function parameters real-time reading
PZD12	values in real time, do not write to	PZD12	
	EEPROM		

4 Communication Configuration in STEP7

1) In STEP7 V5.4, use the S7-300 master to configure the slave .

When using the Profibus master station, you must first configure the GSD file of the slave station to add the corresponding slave station device to the master station system. If it already exists, you can ignore the second step. The GSD file can be obtained from the manufacturer.

The specific operations are as follows:

1. Install GSDML file. If GSDML has not been installed, you need to install it here. Select "Manage General Station Description File (GSD)" in "Options".

2. WSDP .GSD file in the HW config configuration screen . The operation is as follows (Note: The GSD file should not be stored in a Chinese path, otherwise Step 7 may not be recognized):

nstall GSD F	iles:		from the directory
:\Users\Admi	nistrator'	\Desktop\H	V320DPgsd文件 Browse
File HV320DP.gsd	Release	Version	Languages Default

Click Install. After the installation is complete, the HV320-DP Profibus - DP module will exist, as shown in the figure below.

Note: If any master or slave already exists on the HW config interface, you need to close the current interface

when importing GSD and click the part marked with a red circle as shown in the figure below.

You can choose to save the original project. If a warning pops up during the process that the system data cannot be created, please select "OK". After closing the current configuration interface, you can install the GSD file according to the previous steps. After the installation is complete, please select "Open", as shown in the figure below.

Select the previously closed configuration and click "Confirm" to open the original configuration.

Open		×
Entry point:	View:	
Project 💌	Component view 💌] C Onlin @ Offlin
Name:	Storage	
PEOJECT 💌	C:\Program Files\Siemens\Step7\	Browse
🖲 🎒 РЕОЈЕСТ	III SIMATIC 300(1)	
	Object name:	
	Object type. Process all	
OK		Cancel Help

1. The actual hardware system of the configuration system is shown in the figure below.

Image: HW Config - [SIMATIC 300(1) (Configuration) Image: Station Edit Insert PLC View Options Image: Station Edit Insert PLC View Options Image: Station Edit Insert PLC View Options	PEOJECT] Window Help 다 뫯 옷
1 1 2 CPU 315-2 DP 3 2 3 4 5 5 6 -	PROFIBUS (1): DP master system (1) (3) HV320 DP-NORM P-NORM

In the above figure, station 4 is HV320-DP, which is just for comparison and no detailed explanation is given. HV320-DP and this DP expansion card can coexist in the same network .

- HW Config [SIMATIC 300(1) (Co **9**16||916| 🔬 🔬 🗈 🗖 🖼 😽 0 💣 🔭 Lind nt ni CPV 315-2 DP Profil Standar TRIN D Field Device 🗃 (3) HV320 🗃 (4) HV320 DP-NORM BP-NORM đ (3) HV S... DP ID ss F1 to get Hel Chg
- 2. Configure the data characteristics of the slave

adding the PPO 5 type, you can see the address assigned by the PLC to the station, as shown in the figure below. The slot 1 marked in the figure corresponds to the PKW address, a total of 8 bytes, and slot 2 corresponds to the PZD address, a total of 12 bytes.

₹ś

If the selected PPO type does not have a PKW area, the I address and Q address of slot 1 will be empty.

2) Setting PZD Mapping

PZD1 and PZD2 are fixed configurations and do not need to be modified by the user. PZD3~PZD12 are user-defined periodic data interactions, which are set in the hardware configuration. Double-click the SUPER-DP icon in the hardware system (HW Config), click "Device-specific parameters", and set the corresponding parameter address according to the actual usage.

Parameters	Value	
–≝) PZD7(master->slave)	61440	
–≝) PZD8(master->slave)	61440	
–) PZD9(master->slave)	61440	
–≝) PZD10(master->slave)	61440	_
–) PZD11(master->slave)	61440	
–≝ PZD12(master->slave)	61440	
–) PZD3(slave->master)	61440	
–) PZD4(slave->master)	61440	
–) PZD5(slave->master)	61440	
–) PZD6(slave->master)	61440	
–) PZD7(slave->master)	61440	
–≝ PZD8(slave->master)	61440	
– PZD9(slave->master)	61440	
–) PZD10(slave->master)	61440	
–)≝) PZD11(slave->master)	61440	

PZDx (master->slave) indicates the address that the master writes to the slave, and PZDx (slave->master) indicates the address that the master reads from the slave. The configurable PZD range is PZD3~PZD12, and the display format is decimal. That is, if you want to set PZD3 (master->slave) to P 0-12, you need to enter 61452 in the value of this row.

The default value of all PZDs of HV320-DP-V2 is P 0-00 (corresponding to 61440 in decimal). PZDs that are not used can be left unchanged and retain the default value. Each slave needs to set the PZD mapping relationship according to the requirements (if the mapping relationship of each slave is the same, you can select a slave that has been set, press CTRL+C, and then select the Profibus-DP bus in the configuration and press CTRL+V to directly change the station number).

All the above operations complete the operation of the Profibus slave. You can control the inverter by writing the corresponding program in S7-300.

3) Operate the cyclic reading and writing of the inverter slave

The following figure is used as an example to introduce the address allocation. The PLC is S7 315 - 2DP.

1. Directly use the MOVE instruction, as shown in the figure below, to start the inverter forward, with the target frequency being 15 Hz (at this time P0-02=2, P0-06=7).

264

Similarly, the same operation is performed for other written data. The read data can also be transferred from the PIW register to the ordinary Q, I, L, M, D registers through the MOVE instruction, and then parsed.

Edition: V2.0 Thanks for choosing HNC product. Any technique support, please feel free to contact our support team Tel: 86(20)84898493 Fax: 86(20)61082610 URL: www.hncelectric.com Email:<u>support@hncelectric.com</u>

