

HV320-EIP-V2 Ethernet/IP Communication Card User Manual

HNC Electric Limited

1. Overview

Thank you for using our HV320-V2 series inverter and Ethernet/IP expansion card (hereinafter referred to as HV320-EIP-V2 card). HV320-EIP-V2 card is an Ethernet/IP fieldbus adapter card that complies with the internationally accepted Ethernet/IP Ethernet standard. This card is installed on the HV320-V2 series inverter to improve communication efficiency and facilitate the inverter networking function, making the inverter a slave station of the fieldbus and accepting control from the fieldbus master station. This manual requires the corresponding HV320-EIP-V2 card software version to be 1.00 or above, and the matching EDS file name is "HV320-EIP_V1.eds".

Please read this user guide carefully before using this product.

Figure 1-1 Appearance of the HV320-EIP-V2 card

2. Installation and Setup

2.1 Installing the HV320-EIP-V2 Card

The HV320-EIP-V2 card is installed inside the HV320-V2 series inverter. Before installation, disconnect the power supply of the inverter and wait for about 10 minutes until the charging indicator on the inverter lights up. Then, insert the HV320-EIP-V2 card into the inverter and tighten the screws to avoid damage caused by tension of the external signal cable on the inter-board signal socket.

Figure 2-1 shows the hardware layout of the HV320-EIP-V2 card. The 2* 8P bend pin socket (P1) is used to connect the inverter. The HV320-EIP-V2 card provides two network ports J3 and J4 for communication with the master and slave stations.

For hardware details, see Table 2-1

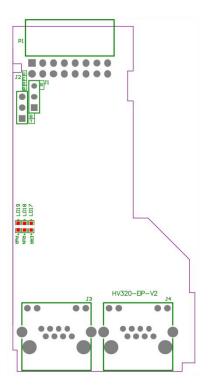


Figure 2-1 HV320-EIP-V2 card (hardware)

Table 2-1 Hardware description of HV320-EIP-V2 card

symbol	Hardware Name	Functional Description	
P1	Pin connector	For connecting to frequency	
		converter	
J3, J4	network port	Uses standard Ethernet RJ45	
	socket, no direction, uses J3		
		and J4 to connect to PN card	
		or PLC for communication	
LD17	Ethernet/IP fault indicator (red)	Description of the	
LD18	Ethernet/IP communication indicator (green)	HV320-EIP-V2 card, see	
LD19	Power indicator light (green)	Table 2-2.	

Table 2-2 HV320-EIP-V2 card specification description

Indic	ator signal	Status description	Solution
I D17	OFF state	normal	N/A
LD17	Always red	communication fail	Please contact technical support.
	Always	EIP is normal	N/A
LD18	green		
	OFF state	Communication with the	P0-28 to 1 and check if the AC drive supports the
		drive is lost	HV320-EIP-V2 card.
	Always	normal	N/A
LD19	green		
LD19	OFF state	The communication board	Check whether the J4 connector is connected properly and
		is not powered.	whether the inverter is powered on.

2.3 Ethernet/IP RJ45 interface

The HV320-EIP-V2 card uses standard Ethernet to connect to the Ethernet/IP master RJ45 socket. Its pin signal definition is the same as the standard Ethernet pin. They can be connected using a crossover cable or a straight-through cable.

Table 2-3 Ethernet/IP communication interface description

Terminal Symbols	Terminal Name	Describe
Ј3	Ethernet/IP interface 1	Ethernet/IP network interface.
J4	Ethernet/IP interface 2	

- When facing the RJ45 interface. Both interfaces must be connected correctly.
- Cat5e shielded twisted pair (STP) network cable must be used to ensure stability.
- 3. Communication Configuration
- 3.1 Communication configuration between HV320-EIP-V2 card and HV320-V2 series inverter After installing HV320-EIP-V2 card on HV320-V2 series inverter, complete the communication configuration to realize the communication between them.
- Communication card settings for the inverter

Inverter software version: L 8.00

The following parameters must be set to enable the HV320-EIP-V2 card to communicate with the HV320-V2 series inverter and connect the HV320-EIP-V2 card to the Ethernet/IP fieldbus network.

function	name	Content	Settings	describe
code				
P0-02	Run command source	1: Terminal command channel (LED on)		Run command issued via communication
P0-03	Main frequency source X selection	DOWN can be modified, no memory is stored after power failure) 1: Digital setting (preset frequency P0-08, UP/ DOWN can be modified, power-off memory) 2: AI 1 3: AI2 4: AI3 5: PULSE setting (DI 5) 6: Multi-segment instructions 7: Simple PLC 8: PID 9: Communication setting	9	Given a target frequency By communication
P0-28	Serial communication protocol	0: Modbus protocol 1: Communication card bridge protocol	1	Select special item communication card for communication

■ Communication control related function codes

Function	name	Predetermined area	Decimal address	
code				
U3-16	Frequency	-Maximum frequency~Maximum frequency		29456
	setting	0.01Hz	29430	
		0001: Forward operation 0002: Reverse operation 0003: Forward jog 0005: Free stop 0006: Deceleration and stop 0007: Fault reset		
U3-17	control			
	commands			29457
		0004: Reverse jog	0007: Fault reset	

Function code	name	Predetermined area		Decimal address
U3-18	DO control	BIT 0: DO 1 output control BIT 1: DO 2 output control BIT 2: RELAY 1 lose Out of control BIT 3: RELAY 2 lose Out of control BIT 4: FMR output control	BIT 5: VDO 1 BIT 6: VDO 2 BIT 7: VDO 3 BIT 8: VDO 4 BIT 9: VDO 5	29458
U3-19	AO 1 control	$0\sim7$ FFF means $0\%\sim1$	00%	29459
U3-20	AO 2 control	0~7 FFF means 0 %~ 100% 0~7 FFF means 0 %~ 100%		29460
U3-21	FMP Control			29461
U3-22	Reserve	Reserve		
U3-23	Speed control	Signed data, 1 rpm		29463

When using the HV320-EIP-V2 card, the default mapping of PZD1 is U3-17, and the default mapping of PZD2 is U3-16. If you find that the command or frequency cannot be written to the inverter normally, but PZD3 \sim PZD12 can be written, and P0-02 =2 and P0-03 =9, you can check whether PE-00 is U3-17 and PE-01 is U3-16 on the inverter. If not, please manually change them to the correct values.

■ Communication monitoring related function codes

Function code	Name	Unit	Decimal address
U0-00	Operating frequency (Hz)	0.01 Hz	28672
U0-01	Set frequency (Hz)	0.01 Hz	28673
U0-02	Bus voltage (V)	0.1V	28674
U0-03	Output voltage(V)	1V	28675
U0-04	Output current(A)	0.01A	28676
U0-05	Output power (kW)	0.1kW	28677
U0-06	Output torque(%)	0.10%	28678
U0-07	DI input status	1	28679
U0-08	DO output status	1	28680

U0-09	AI 1 voltage (V)	0.01V	28681
U0-10	AI 2 voltage (V)	0.01V	28682
U0-11	AI 3 voltage (V)	0.01V	28683
U0-12	Count value	1	28684
U0-13	Length value	1	28685
U0-14	Load speed display	100.00%	2868600.00%
U0-15	PID Setting	1	28687
U0-16	PID Feedback	1	28688
U0-17	PLC stage	1	28689
U0-18	PULSE input pulse frequency (Hz)	0.01 kHz	28690
U0-19	Feedback speed (Hz)	0.01 Hz	28691
U0-20	Remaining running time	0.1Min	28692
U0-21	AI 1 voltage before correction	0.001V	2869300.00%
U0-22	AI 2 voltage before correction	0.001V	28694
U0-23	AI 3 voltage before correction	0.001V	28695
U0-24	Line speed	1m/ Min	28696
U0-25	Current power-on time	1 Min	28697
U0-26	Current running time	0.1 Min	28698
U0-27	PULSE input pulse frequency	1Hz	28699
U0-28	Communication setting value	0.01%	28700
U0-29	Encoder feedback speed	0.01 Hz	28701
U0-30	Main frequency X display	0.01 Hz	28702
U0-31	Auxiliary frequency Y display	0.01 Hz	28703
U0-32	View the value of any memory address	1	28704
U0-33	Synchronous machine rotor position	0.1°	2870500.00%
U0-34	Motor temperature value	1°C	2870600.00%
U0-35	Target torque(%)	0.10%	28707
U0-36	Resolver position	1	28708
U0-37	Power factor perspective	0.1°	28709
U0-38	ABZ position	1	28710
U0-39	VF separation target voltage	1V	28711
U0-40	VF separation output voltage	1V	28712
U0-41	DI input status intuitive display	1	28713
U0-42	DO input status intuitive display	1	28714
U0-43	DI input status intuitive display 1	1	28715
U0-44	DI input status intuitive display 2	1	28716
U0-45	accident details	1	28717
U0-58	Z signal counter	1	28730
U0-59	Setting frequency(%)	0.01%	28731
U0-60	Operating frequency(%)	0.01%	28732
U0-61	Inverter status	1	28733
U0-62	Current fault code	1	28734
U0-63	Operating frequency after droop control	0.01 Hz	38375

U0-64	Current Back EMF	0.1V	28736
U0-65	reserve	-	-
		100: CANopen	
		200: Profibus - DP	
U0-66	Expansion card model	300: CANlink	28738
		400: Profinet	
		500: EtherCAT	
U0-67	Expansion card version number	0.01	28739
U0-68	Inverter status	1	28740
U0-69	Operating frequency (Hz)	0.01 Hz	28741
U0-70	Motor speed	1 rpm	28742
U0-71	Output current	0.1A	28743

- 1. When using the HV320 EIP V2 card, the default mapping of PZD1 is U0-68, and the default mapping of PZD2 is U0-69 . If you find that the status or operating frequency cannot be read normally, but PZD3 \sim PZD12 can be read, you can check whether PE-20 is U0-68 and PE-21 is U0-69 on the inverter . If not, please manually change it to the correct value.
- 3.2 Ethernet/IP Communication
- 3.2.1 Ethernet/IP topology

Ethernet/IP include bus, star, and tree. By making reasonable use of switches, a variety of networking can be achieved.

The following diagram shows the bus topology

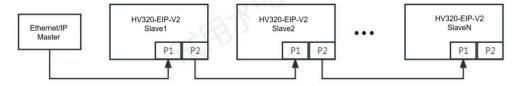


Figure 3-1 Bus connection topology

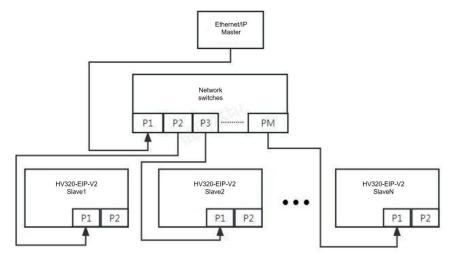


Figure 3-2 Star connection topology

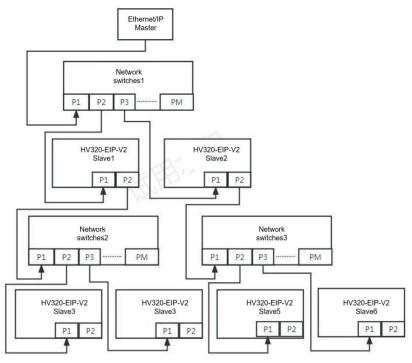


Figure 3-3 Tree connection topology

3.3.3 Data transmission format

Ethernet/IP Data Format

The usage type is divided into five types: PPO type, PPO1, PPO2, PPO3, PPO4, PPO5

The functions that each data format can accomplish are as follows:

Table 3-2: PPO type description

Type of data	Supported Features
	Single function parameter operation
PPO1	Inverter command, frequency setting
	Inverter status, operating frequency reading
	Single function parameter operation
	Inverter command, frequency setting
PPO2	Inverter status, operating frequency reading
	4 function parameters are written periodically
	4 function parameters are read periodically
PPO3	Inverter command, frequency setting
PPO3	Inverter status, operating frequency reading
	Inverter command, frequency setting
PPO 4	Inverter status, operating frequency reading
PPO 4	4 function parameters are written periodically
	4 function parameters are read periodically
	Single function parameter operation
	Inverter command, frequency setting
PPO5	Inverter status, operating frequency reading
	• 10 function parameters are written periodically
	• 10 function parameters are read periodically

PPO Type Description

The data block contained in the PPO type data format is divided into two areas, namely the PK W area (parameter area) and the PZ D area (process data area). The type data format is shown in the figure below:

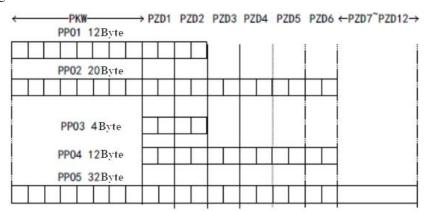


Figure 3-4: PPO type data format

PKW Data Description

PKW data mainly realizes the master station's read and write operations on a single parameter of the inverter. The communication address of the inverter parameter is directly given by the communication data. The functions realized are as follows:

- a) Reading inverter function parameters
- b) Change of inverter function parameters

Data Format

PKW data contains three groups of array areas, namely PKE , IND, and PWE, among which the PKE data byte length is 2 bytes, IND is 2 bytes, and PWE, PWE is 4 bytes.

The data format is shown in the following table:

TABLE 3-3: PKW DATA FORMAT

The master sends data PKW							
Operation	Paramet	ter address	Reserve		Write operation:		
Command					parameter value		
						Read opera	tion: empty
PKE	PKE	IND	IND	PWE	PWE	PWE	PWE
		Commun	ication card	l response da	ata PKW		
Operation Parameter address			Reserve		Success: R	eturn value	
Command						Failed: Err	or message
PKE	PKE	IND	IND	PWE	PWE	PWE	PWE

Table 3-4: PKW data description

Master sends data PKW description		Inverter response data PKW description
PKE	High 4 bits: command code	High 4 bits: Response code
0: No request		0 : No request
1: Read parameter data		1 : Parameters are correct.
2: Change parameter data		7 : Unable to execute
	(The above command codes are	Lower 8 bits: parameter address high bits

	decimal numbers		
	according to)		
	Lower 4 bits: reserved		
	Lower 8 bits: parameter address		
	high bits		
IND	High 8 bits: parameter address low	High 8 bits: parameter address low bits	
	bits	Lower 8 bits: reserved	
	Lower 8 bits: reserved		
PWE	High 16 bits: reserved	When the request is successful: parameter value	
	Lower 16 bits: not used for read	When a request fails: Error code (same as	
	requests; indicates parameter	standard	
	value for write requests	MODBUS	
		Consistent)	
		1 : Illegal command	
		2 : Illegal address	
		3 : Illegal data	
		4 : Other errors	

Application examples

The master station reads the inverter function parameter P0-08 sending data PKW area and the inverter response data PKW area as shown in the figure below

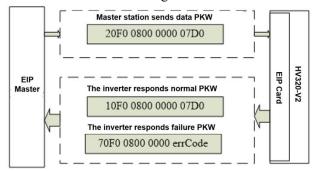


Figure 3-5: Example of the master station reading parameters and sending PKW data

PZD area data description

The PZD area enables the master station to modify and read the inverter data in real time and exchange data periodically.

The frequency converter is directly configured. It mainly includes the following contents:

- a) Inverter control command and target frequency are given in real time
- b) Real-time reading of the inverter's current status and operating frequency
- c) Real-time interaction of function parameters and monitoring parameter data between the inverter and the Ethernet/IP master station

Note: "HV320-EiP V1.eds" and later versions

The default mapping of PZD1 written is U3-17, and the default mapping of PZD2 is U3-16.

The default mapping of PZD1 read is U0-68, and the default mapping of PZD2 is U0-69.

PZD process data mainly completes the periodic data interaction between the master station and the inverter. The interaction data is shown in Table 8 below:

Master sends data PZD area			Inverter response data PZD area		
PZD1	PZD2	PZD3~PZD12	PZD1	PZD2	PZD3~PZD12
Control Word	Frequency	Real-time	Status word	Operating	Real-time
(U3-17)	setting	change of	(U0-68)	frequency	reading of
	(U3-16)	inverter		(U0-69)	inverter
		function			function
		parameters			parameters

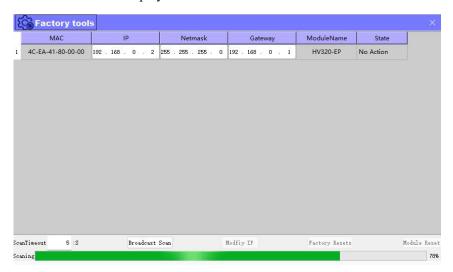
Table 3-6

	14016 5-0				
Master sends data PZD description		Inverter response data PZD area			
PZD1	Inverter command word (the command source needs	PZD1	Inverter operating status		
	to be set to communication, that is, P0-02=2)		information		
	0001: Forward operation		0001: Forward operation		
	0002: Reverse operation		0002: Reverse operation		
	0003: Forward jog		0003: Shutdown		
	0004: Reverse jog				
	0005: Free stop				
	0006: Deceleration and stop				
	0007: Fault reset				
	0008: Fault reset (fault reset is only possible in				
	communication control mode)				
PZD2	The inverter target frequency (frequency source is	PZD2	Inverter operating frequency		
	set to "communication") is in the range from the		(unit: 0.01Hz)		
	negative frequency upper limit (negative value) to		Returns the actual operating		
	the positive frequency upper limit (including the		frequency of the current		
	decimal point, for example, 2000 corresponds to		inverter.		
	20.00 Hz on the AC drive). When the given target		The returned data value is a		
	frequency exceeds this range, the AC drive runs at		16-bit signed data.		
	the frequency upper limit.		10-bit signed data.		
	For example, if the Frequency High Limit setting is				
	50.00 Hz and the Comm Setting is 6000, the AC				
	drive will run forward at 50.00 Hz. If the Frequency				
	High Limit setting is 50.00 Hz and the Comm				
	Setting is -6000, the AC drive will run reverse at				
	50.00 Hz.				
PZD3∼	Change function parameter values in real time	PZD3~	Function parameters		
PZD12	, do not write to EEPROM	PZD12	real-time reading		

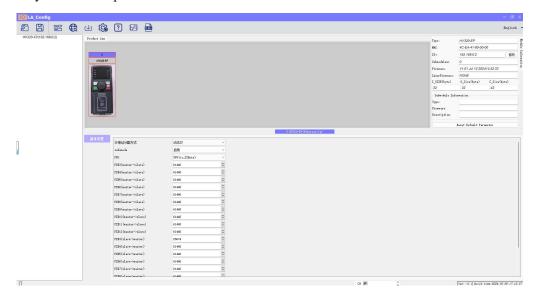
4. Configure the slave station in LAEconfig software

1) Install the configuration software on your computer

2) After the installation is complete, click Accounts Open the software.



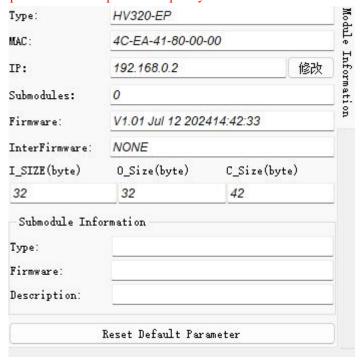
4) The software interface includes: toolbar, module information tree directory, parameter setting area, module information display area, etc.



5) Modify the IP address of the inverter

Click the button in the toolbar , click Global Scan, select the IP address to be modified, and click Modify IP Address. The IP address allocation process begins, and whether the allocation is successful can be displayed in the status column at the back.

6) Modify the inverter parameters


7) After modifying the parameters, download the inverter parameters

Set the module parameters in the parameter setting area. After setting, click download the module parameters.

At this point, the inverter parameter setting is completed.

Next is the Ethernet/IP master station settings. Configure the relevant parameters according to the configuration software of different master stations.

Note: The main parameters are input and output bytes

Edition: V2.0

Thanks for choosing HNC product.

Any technique support, please feel free to contact our support team

Tel: 86(20)84898493 Fax: 86(20)61082610

URL: www.hncelectric.com
Email:support@hncelectric.com

